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1. Introduction

Let L = (PI, P2, ..., p.) be a list of pieces with sizes in the interval (0, I. The one-dimensional bin

packing problem is to pack the pieces into a minimum number of bins in such a way that the sum of the

piece sizes in each bin is at most one. As this problem is known to be NP-complete 1GJ79, K721, much

work has been done in the study of approximation algorithms; a survey of these results is given in

ICGJ83.

For any (heuristic) bin packing algorithm A, let A (L) denote the number of bins used by algorithm

A in packing list L, and let OPT(L) denote the minimum (optimum) number of bins required to pack

list L. We are concerned with the asymptotic worst-case performance ratio

RA - iM max A(L)
r-co OPT(L)=. OPT(L)

Thus, we would like to construct an algorithm A which has a performance ratio close to one. Intuitively,

we want an algorithm that minimizes, for large lists, the worst-case percentage of excess bins used com-

pared to an optimal packing.

In this paper we concern ourselves with algorithms for which the pieces in list L are available one at

a time, and each piece must be packed in some bin before the next piece is available; such an algorithm is

referred to as on-line. Previously known on-line algorithms include the 0(n) Next-Fit (NF), and the

0(n log n) First-Fit (FF) [J73, J74, JDUGG741, the 0(n) Harmonic (H) [LL831, the O(n log n) Refined

First-Fit (RFF) 1Y801, and the 0(n log n) Doubly-Refined First-Fit (DRFF) B79b]. These algorithms

have the following performance ratios: Rh, - 2, Rp = 1.7, RH = 1.692.... R,, = 1.0, and

RDRp < 1.64. In this paper we present a new linear-time algorithm which we call Modified Harmonic

(MH) and show that RAN < 1.61(5861)*.

On the lower bound side, Yao [YS0 showed that for any on-line algorithm, the performance ratio is

at least 1.5. This lower bound was further improved to 1.536... independently by Brown [B79aj and Liang

ILs01

It should be observed that considerably better performance ratios exist for algorithms which are not

on-line. For instance, running the First-Fit Algorithm on pieces that have been ordered by decreasing size

gives the First-Fit Decreasing (FFD) Algorithm [J73, J74, JDUGG74I, for which R,,rD = 1.2.

I



Friesen and Langston [FrL81] devised a hybrid algorithm with a performance ratio of 1.2, and Garey and

Johnson IGJ811 modified First-Fit Decreasing to obtain an algorithm (MFFD) with
71

RAjp.-D - = 1.183'. Fernandez de la Vega and Lueker [FeL81J showed that for every e > 0, there is

a linear-time algorithm Ajej with RAIE, _ 1 + C. More recently, Karmarkar and Karp IKK8 presented

an algorithm that is asymptotically optimal; i.e., has performance ratio one.

In Section 2, we present our Modified Harmonic Algorithm, and describe the packings produced. In

Section 3, we use a novel weighting function scheme to analyze the algorithm. In Section 4, we character-

ize a large class of linear-time on-line algorithms for which the performance ratio is at leut
S3 1

+ I = 1.61", suggesting that it may be difficult to improve on our Modified Harmonic Algorithm if

we restrict ourselves to linear time. In Section 5, we summarize our results and make some further obser-

vations.

2. The Modified Harmonic Algorithm

The Modified Harmonic Algorithm (MH) is based on three previously known on-line algorithms: the

Refined First-Fit Algorithm of Yao [YSM, the Next-Fit Algorithm of Johnson [J73], and the Harmonic

Algorithm of Lee and Lee [LL83I. Because the latter two algorithms are needed to describe our algo-

rithm, we first briefly describe them.

The Next-Fit Algorithm operates as follows. Initially, the empty bins are indexed as bin,, bin2 .

Piece P, is packed in bin,. Suppose that PI, P2, ..., Pi-I have been packed, and p, is the next piece to be

packed. Let j be the largest index such that bin, is nonempty. If pi will fit in bin,, then pi is packed in

bin1 ; otherwise pi is packed in bin,+ 1 .

The Harmonic Algorithm is based on the harmonic partition of the interval (0, 1:
S

(0, 1] - 6 1j, where Ij (l/j + 1), /jI, 1 < j < k, and Ik - (0, 1/ki,
ji-

for some k > 1. A piece p is called an li-piece if p C-, 1 < j < k. Initially, the set of empty bins is

divided into k infinite classes: bins of type Bj, 1 _j k. A bin of type B, is used to pack only I,-

pieces. Note that j i-pieces can be packed in a bin of type B, for 1 < j < k. Suppose that
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Pi, P2, .... Pi-I have been packed, and pi is the next piece to be packed. If pi is an 1i-piece for some j,

1 < j < k, then it is packed in a nonempty bin of type Bj that contains fewer than j pieces, if one

exists; if no such bin exists, then p, is packed in an empty bin of type Bj. If pi is an lk-piece, then it is

packed in bins of type B& by Next-Fit.

Now we are ready to describe the Modified Harmonic Algorithm. The algorithm is based on the fol-

lowing partition of the interval (0, 11:

(0, 11 - hUT2 .6,

where T, - (1 - y, 11, T2 - (y, 1/2, 11 = (1/2, 1 - l, 12 - (113, y),

I = (11(j + 1), II I, 3 < j < k, and lk = (0, l1kl,

for some V and k, 1/3 < I < 1/2 and k 2: 3 (exact values for I and k will be given in Section 3). A

piece p is called an

T-piece if p E T1,

r 2-piece if p E r,

Ij-piece if p Ei for some j, 1 < j < k.

Initially, the set of empty bins is divided into k + 2 infinite classes: bins of type Af, 2, and B,

1 < j :5 k. A bin of type ff' is used to pack only T-pieces, a bin of type F2 is used to pack only T2-

pieces, and a bin of type B,, 2 < j : k, is used to pack only Ij-pieces. All 1 -pieces are packed in bins

of type B1. In addition, some of the 1,-pieces for 2 < p !_ 3 or 6 < p :5 k - 2, are also packed in bins

of type B1. In particular, for each p, a fixed fraction -L_ (values for the m,'s will be given in Section 3)
mP

of the I-pieces are packed in bins of type BI; if there are a sufficient number of I1-pieces, then each bin

of type B, will also contain an 11-piece. Thus, each nonempty bin of type B, will contain an 11-piece

and/or 1,-pieces (at most max(1, pyJ) of them) for one p, 2 :5 p _5 3 or 6 < p 5 k - 2. The algorithm

packs a list in such a way that, at any stage in the packing:

(1) each nonempty bin of type ff1 contains I T-piece,

(2) each nonempty bin of type H2 (except possibly the last one) contains 2 T2-pieces,

(3) each nonempty bin of type Bj, 2 5 j < k, (except possibly the last one) contains j I-pieces,

(4) each nonempty bin of type B (except possibly the last one) is at least k -I full,
k



g and

(5) each nonempty bin of type B,

(i) contains only an 11-piece,

g(ii) contains only an 12-piece or an 13-piece,

(iii) contains an 11-piece together with an 12-piece or an 13-piece,

I(iv) contains [pyJ 1,-pieces for some p, 6 < p :5 k 2,

(v) contains an I, -piece, and I yj 1,-pieces for some p, 6 <_ p :5 k - 2,

I(vi) contains at least one, and at most [pu.J - 1 1,-pieces for some po, 6 < p :5 k - 2,

or (vii) contains an 11 -piece together with at least one, and at most [pyj - 1 1,-pieces for

j some p, 6 < p < k - 2.

Moreover, if there is a bin as in (i), then there can be no bins as in (ii), (iv), or (vi). Also,

( for each p, 6 < p 5 k - 2, the number of bins as in (ti) plus the number of bins as in (vii) is

at most one.

When we say harmonic pack (pi, 4j), where pi is an Ii -piece, 2 < j < k, we mean:

I if there exists a nonempty bin of type Bj containing fewer than j 1-pieces

then pack pi in that bin

else pack pi in an empty bin of type Bi.

I We now give a precise statement of our algorithm.
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Modified Harmonic Algorithm

for i := l to n do

begin

case pi in

1;: pack pi in an empty bin of type '1

T2 : if there exists a bin of type 9'2 containing only one Tz-piece

then pack pi in that bin

else pack pi in an empty bin of type f 2

Ij (j 4, 5, or k - 1): harmonic pack (pi, Ij)

I&: pack pi in bins of type Bb by Next-Fit

I1: if there exists a nonempty bin of type B1 that does not contain an 11-piece

then pack pi in that bin

else pack pi in an empty bin of type B,

1p (2 :< p < 3) : if pi is the (mr)h 1,-piece to arrive thus far for some integer r > 1

then if there exists a bin of type B, containing only an 11-piece

then pack pi in that bin

else pack pi in an empty bin of type B

elsc harmonic pack (pi, 1,)

1, (6 p <_ k - 2): if pi is the (m,r)b 1,,-piece to arrive thus far for some integer r > 1

then if there exists a bin of type B1 containing at least one, and at most

puJ - I 1,-pieces

then pack p, in that bin

else if there exists a bin of type B1 containing only an I1 -piece

then pack pi in that bin

else pack pi in an empty bin of type B1

else harmonic pack (pi, 1,)

end.
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It is easy to see that the Modified Harmonic Algorithm runs in linear time and uses linear space.

Note that in the above algorithm, we had implicitly assumed that the m's are integers. The values we

will be specifying in Section 3 will not be integers. In this case we fcquire that at any stage if a. is the

9 number of/1-pieces that have been packed, then 4[_-J of them have been packed in bins of type B1. It

g is easy to modify the algorithm accordingly.

9 3. Analysis of the Algorithm

In this section, we use weighting functions to analyze the performance of the Modified Harmonic

Algorithm. Throughout this section we shal be considering only the nonempty, i.e. packed, bins. The

weght of a bin is defined to be the sum of the weights of all the pieces in the bin. We shall assign

weights to pieces in such a way that the average weight of all but a constant number of bins packed by

our algorithm is at least one.

Let w and W2 be the weights of an ?-piece and an T2 -piece, Tespectively. Let wj be the weight of

an 1I -piece, 1 :5 j < k, and let w&(p) be the weight of an I-piece p.

Since a bin can contain one Ti-piece, two T2-pieces, four /.-pieces, five 15-pieces, or k - 1 Ik-l-

pieces, we have

' ff2 =,

=2'

I
1

W4 = 4

W57 =
1

Since a bin of type B1 will be at least k 1 full, we assign to an Is-piece p the weight
k

,U(p) - k I
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weight of piece a for

Interval containing piece v

a>O a---O

T 1: ( -y , i1 
1

11: (1/2, 1 - y1 0
1 1

T"2: (u, 1/2J 2 2
_ ( 1 1

12: (1/3, yii 1 + _

2 2 T2  2 2M- 2

13 (1/4, 1/31 1 1 1+ 2
3 3 -m3  3 3M3

1 1

14 (1/5, 1/41 1 1
1 1

15 (16,1111 1

16: (1/7, 1/61 1
6 6,6 6me me bzj

1, (1/p+ 1),1/p1 1 1 + I

t.2: (1(k - 1), 1(k - 2)J11 + 1 +
k - 2 (k - 2)M&-2  k -2 (k - 2)m_ 2 M_k -2)yj

41: (I/k, 1/(k - 1)1 1 1
k -I k- I

k k
4: (0, lIkl kkI -kkI

Table I. Weighting functions for a > 0 and a - 0.
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Recall that, for 2 < p < 3 or 6 < P < k - 2, some of the /,-pieces are packed in bins of type B1

The weights we assign to the 1x-pieces and 1,-pieces depend on the input list L. Let a be the number oft
bins in the packing of L produced by the Modified Harmonic Algorithm that contain only an I-piece

g The weights we assign to the 11 -pieces and 1,-pieces depend on whether a > 0 or a - 0.

For a > 0, there are bins containing only an l,-piece; moreover, every bin of type B, contains an

11-piece. We assign weights to the 11-pieces and 1,-pieces in such a way that the average weight of all

bins of types B, and BO is one:I
WI ,

Wp~p 1- for2 <p <3or6<p<k-2.

For a = 0, not all the bins of type B, contain an 11-piece. Again, we assign weights to the I,-

pieces and 1,-pieces in such a way that the average weight of all bins of types B, and B, is one:

W, 0, .t I I 0

W, I -I + - for2<P<3,p m) m,

,€ 1 - 1 -
prmp mppp]for6< p<k2

Table I summarizes the above weighting functions.

We make use of these weighting functions to analyze our algorithm's performance. Letting W(L )

be the sum of the weights of all the pieces in list L, we show in Lemma 1 that

MIL )< W(L + 2k-7,

and show in Lemma 2 that

HV(L ) < 1.+ _L + -I- OPT(L ).

Combining these results gives us the following bound on our algorithm's performance:

3 1 1
RAW < 3- + 1 + 1

2 9 222

In Lemma 3, we prove that this bound is essentially tight. The results of these three lemmas are
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combined to give Theorem 1.

Lemma 1. For any list L, MH(L) < W(L) + 2k - 7.

Proof. Let F and 2 be the number of bins of type f'1 and H2, respectively, and let bi be the number of

bins of type B1, 1 < j < k. It is clear that

&

MH(L) = + + b,.

Let W and W2 be the sum of the weights of all the T-pieces and T2-pieces, respectively, and let Wj be

the sum of the weights of all the Ij -pieces, 1 < j < k. It is clear that

&

W(L)= W,+ W+ SW,.
j=1

It is easy to see that we have constructed the weighting functions in such a way that each bin

(except possibly the last one) of type U', 9 2, B4, B5, or Bk-1 , has weight precisely one. So

F2< W2 +
b 4 < W4 + 1,

bs < W5 + 1,

6k_1 < Wk-1 + I.

Since each -bin of type Bk (except possibly the last one) must be at least k- full, its total weight is at
k

least one, and so

b5 < Wk + 1.

Let a) be the number of 1j -pieces, I < j _5 k. To analyze the weights of bins of types B 1 and B,

2 < p < 3 or 6 < p < k - 2, we consider separately the two weighting functions, and show that the

lemma holds both for a > 0 and a = 0.

Cae I a > 0. Every bin of type B1 has an 11 -piece, and so

b, = W 1.

For 2 < p _ 3 or 6 < p < k - 2, not all of the 1,-pieces are packed in bins of type B,. In particular,
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we have

= .

Summing all the inequalities for Case 1, we get

MH(L) < W(L) + k.

Case 2. a=O. A bin of type B, containing an 1,-piece for some p, 2< p< 3or6 < p< k -2, is

called a bin of type Bl,,. Since a = 0, every bin of type B1 is of one of the Bl,, types. Let bl,. be the

number of bins of type Bl,, Clearly b, = bl,,. Noting that for a = 0 the weight of an 11-piece is 0,

the weights of the 1,-pieces must "compensate". For 2 < p < 3, we have

bp + bl.0 - - +
[--o, (a,- +1 +I

< + + I

= WO+ 1.

For 6 < p k k - 2, each bin (except possibly the last one) of type Bl,, contains tPYJ 4,-pieces. As above,

we have

bo + bilp = ao- +

410 + + 2
( P I-mI MO" YJ )
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= W, + 2.

Summing all the inequalities for Case 2, we get

JH(L) <W(L)+2k-7. 0

265

Lemma 2. Consider the weighting functions specified in Table I for a > 0 and a - 0. Let y = 2-,

(k-1Xp+ 1) 37(p+ 1) for6<p _k-2(seeTable l).

k=38, m2 -- 9, mk= 12, and i- k-p-i 37-p

Then

W()< 2 -+ --OP()
Proof. Consider a bin B in the optimal packing, and let a ! #2 -- ". " " be the pieces packed in

it, 81 + 82 + + s 1 1. Let w(a) be the weight of a piece si, and let w(B) be the weight of B.

It is clear that

w(B) = w(81) + W(s2 ) + + W(.,).

We shall prove that

w(B)< I + I

both for a > 0 and a - 0.

The proof is done by cases, depending on the sizes of some of the largest pieces in B. Tables M and

IV summarize the cases for a > 0 and a - 0, respectively. Columns &I, o2, and o3 indicate the intervals

containing the first, second, and third largest pieces in B. For convenience, we let 14 (j r) denote one

of the intervals 4, I,+, , ... , 4, or the "interval" 101; i.e., no piece at all. Column T gives an upper bound

on the remaining space left in the bin after packing the pieces of sizes specified in columns #1, *2, and 83.

To determine an upper bound on w(B), we find it useful to compute upper bounds on WL(8) for
8

each possible piece size # (see Table II). In particular, we shall make use of the fact that

'1" -< max,<

1='i ... r, (1.-
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Interval containing piece u w(s) Y ) w() *UO
U U

(upper bound) (upper bound)
|T 1: (1- v,1 1161

T, ~ ~6841 4

419 419

1 1,: (1/2, 1 - yl 2 0 0

1 342 1 342
2 265 2 265

1 4 4 5 5

3 T 3

13 (1/4, 1/1I 11 7 14
31 (1/4, 1/41 g 18 9

1 5 1 5

14: (1/5, 1/444 4 4

15: (1/6, 1/51 16 1 6

55 5 5
38 38 107 107

7037 37 14*37 2*37

3 38 17 1 7
112: (1/13, 1/121 13*37 37 52.37 4 V

1,$: (1/19, 1/181 3 81 4
1319*37 37 6.37 6*37

119 (1/20,1/l91 38 38 71 284
20 37 37 35*37 7.37

is 3 49 49's
4-2: (1/(k - 1), 1/(k - 2) 3737 37 481 37 481

1 38 1 38
',b, : (I/k, l/(k - 1)1 37 37 37 T

38 38 38 384k: (o,1ik] 37 37 38 37

Note: For a-0, #Elj, and .' E i,, 6 < j 5 j' < k, upper boundo wil > upper bound on

265

Table ff. Weight summary for all pieces s, when p - 26j-, k - 38, m 2 - 9, ms - 12, and

MO k- lp + I) . 37(,+ 1) for6<P<k-2.
k-p-I 37--
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w(B)
81 82 83

W(81) + u(82) + + W(81)
(upper bound)

1 77 1 1 7738
2 884T 6 2 +84 37

1 orT 12 1 1+4 1,38
6+9 6 37

111 1 1,38

i or T, 13 14 1 + L-+ + -,a
20 38 4 2037

111 1,6

I, or T, 13 Ij U (5) 4
4 38 4 5

or T, 14 14 1 + -+ -+ -. a
10 4 4 10 37

11 orT, 14 1,(,>5) 10 1+ 7+ l- T

1 1 62+2

T2or i -2) 1
3

3 1 1
Table III. List of cases proving w(B) < - + -+ - for a > 0.

2 g 22



W(B)
#1 82 3T

w(,,) + W(82) + + W(81)
I _(upper bound)

11 1 ie 5 13 1 .38

1 37 I+ 5 37, 284

2 2 3
1T4 , I I I 154 107

684 4 2 2 684 2*37

1 5 5 7 1 177
T2 or 2  12 13 12 9 9 18 12 " 4*37

1 5 5 1, 107

T 2 orI 2  12 Ij ( _4) 1 5 + "+ L.--7
3 9 9 3 2*37

T 2 5.+ 2,14T~orl 2  11(j-3) 3 9 3 9

Ij >3) 41,
9

I
i3 1 1

Table I. List of cases proving (B) < -+ -+ _- for a =0.I2 9 222

Column w(B) in tables MI and IV specifies an upper bound on w(s1 ) + t(# 2) + - + wt(s,), calcu-

lated by taking wt(s1 ) if *I is specified, plus W(82) if s2 is specified, plus Wv(83) if s3 is specified, plus

r max .

I

I
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For example, consider the case for a > 0, with #I E 1 and 82 E T2. Then

77 <1o
-(81 + 2) < I - (1/2 + y) = 1/2 - = <1/

Thus, we know that each of 83, ... , Ot must be smaller than 1/6, and so (from Table H) ) < for

3 < i < . This gives

w(B) - w(,l) + W(82 ) + w(,i)
i=3

< I 1 77 .38
2 684 3731+ L + I-

3 1 1

2 9 222

As another example, consider the case for a > 0, with #, E 1 and 02 ElI (j 5 5). Then #I > 1/2,

and r = 1 - *I < 1/2. The 1 portion of the bin has no piece larger than 1/5, and so w(8) < 6for

any piece in B other than #I. This gives

a 1 6 3 1

w(B) w(,) + wo(8) < I + -.- < 3+ -
2 25 2 9

As another example, consider the case for a a 0, with 81 E 12, 82 E 12, and 83 E 13. Then

r---(,1 + 2+ 03)< 1-(1/3+ 1/3+ 1/4)- 1/12.

Thus, we know that each of s, ..., o1 must be smaller than 1/12, and so _ < -7 fo 4 :< < t.
U' 4*37

This gives

w(B) - u(,,) + W(82) + W(#3) + W(,,)
j-4

< L+ -+ -+ 17
9 9 18 12 4*37

3 +1
2 9

Tables [] and IV enumerate all possible cases, and it is easily checked that the values in the wuH)

S 1 1
column are all at most + - + -. Thus, the result of the lemma follows. Q

2 9 T+22



-17-

3 I
Lemmas I and 2 guarantee that the performance ratio of MH is less than - + I- + We

* now show that this bound is essentially tight.

I2665 (__-___ +_)_7 _ }

Lemma 3. Let V= -, k =.38, m 2 -9, m3 -12, and m = (k-lp-+ 1) 37(p+ 1) for
684' k-p-i 37 -p

6< p< k-2. Then

RAW > 3 + I + 1 1
T 9 222 987,012"

Proof. We shall exhibit lists L with arbitrarily large OPT(L) such that

MH(L) 3 I I I
OPT(L) 2 9 222 987,012"

Let n be a multiple of 24,675,300, and let

L I , (p I, p2, ... }

L2 M (91, f2, . ),

L3 - ( 1, .2 to),/ ,4 ' (ul, V2, ... U20),

and

L5 = (vj, 2, ... ,

where

IPjin + 4,
2

M I + 11

+ C

~1 27

and

26,676
for some e, 0 < e < 10 ze. Let L be the list obtained by coneatenating these lists; i.e.,

L - L 1 L 2L 3 L 4L 1 .

r
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Note that pi + qj + Ij + u+ + u . + v, - 1. Hence, the packing in which each bin contains a p,

piece, a qj piece, a t, piece, two uj pieces, aad a vi piece is an optimal packing, and so OPT(L) - n.

481 999

Now consider the packing produced by our algorithm. Note that mzs - M and mm - 999

Since -5yJ = 9 and I26gJ - 10, 9 t, pieces or 10 uj pieces can be packed in the same bin with a pi

piece. Thus, the packing produced by our algorithm consists of

n 2n 64,702 n' bins, each containing 1 p, piece,
9 m2 10m2 64,93

n 2

n'' 2 , bins, each containing I p, piece, and 9 t pieces,

2n lln
IOM26 -,- bins, each containing 1 pi piece, and 10 uj pieces,

n ~~I- I 19- bins, each containing 25 1, pieces,
T5_ M2) 481

2n- 2'i A bins, each coutaining 26 u, pieces,

- bins, each containing 2 qj pieces,
2

and
n

_---- bins, each containing 26,676 v pieces.

26,676

Summing, we obtain

MHL n+ 1 + I

12 9 222 987,012)
or

MH(L) . 3 + I
OPT(L) 2 9+ 222 987,012

Since OPT(L) - n can be arbitrarily large, the result follows. 0

Note that 967,012 - 25,676*37. The discrepancy of 1/987,012 in our analysis is due to the weights we

migned to the I& -pieces. For the list considered in the proof of Lemma 3, bias of type B& are completely

packed, instead of being only k -I fuU.
k



Lemmas 1, 2, and 3 are summarized by the following theorem.

$Theorem 1. Let y Lk-=38, M2 -9 ms - 12, and m = (k - lb + 1). 37(p + 1) for
684 k- p-i1 37- p

6<p< k-2. Then

3+ -+<R.<I+ +

ie,2 9 222 987,012- 2 9 222

g 1.6158146 < RiM < 1.61561)

9 4. A Genel Lower Bound

In this section, we present a lower bound for a class of algorithms, which includes the Modified flar-

I monic Algorithm presented in Section 2.

I Let C be the class of algorithms which behave as follows. If A E C, then A divides the interval

(0, 11 into disjoint subintervals, including T, (1 - 1, 11, 11 - (1/2, 1 - yf, T2 - (y, 1/21, 12 - (1/3, yf,

and I. (0, X1, for some y and X, 1/3 <1y 1/2 and 0 < X :5 1/3. Pieces are classified according to

the intervals to which they belong. The packing produced by A must obey the following rules:

(R 1) The number of bins which contain only one 12-piece (with or without pieces of other types) is a

fixed fraction 1/rn (m need not be an integer, and if this fraction is zero, we take m to be oo) of

the total number of 12 -pieces in the input list.

(R 2) No bin may contain

r(i) in T1 .piece ad an 2pe,
or

(ii) am /,-piece and an T2-piece.

(R 3) No bin may contain in 14,-piece together with am l2-piece, 11-piece, T2 -piece, or an 12 -piece.

I Note that the Modified Harmonic Algorithm is in C. Also note that the above rule R2 rules out

packing 11 U T,-pieces with 12 -pieces, or 11 -pieces with 12 UT2 -pieces, by First-Fit (O(n to n) time). We

have the following lower bound on the performance of any algorithm is C.
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3 1

Theorem 2. For any algorithm A E C, RA 3 + - = 1.61.
2 9

Proof. We shall exhibit three kinds of lists L with arbitrarily large OPT(L), and show that the average

ML)3 1
value of A(L) for these three kinds of lists is at least 1- + -. Each of these three kinds of lists will

OPT(L) 2 9

be of the form L =a LjL 2 L3, where L I - (u1, u 2, ... , us), L 2 = (vj, v2, ..., vs), and

M

L3 = (ti, 12, ..- tm.). Moreover, we will always have uj + v, + 11 =1 1. Hence, the packing in

which each bin contains a uj piece, a vi piece, and M t, pieces is an optimal packing, and so

OPT(L) - n.

Throughout the proof, we let n be a positive integer that is a multiple of 6m (for simplicity, we

assume that m is rational), M = [-, and c be such that 0 < e < min (1/2- y }2 (y - 1/3:2

(M + 1)' (M + i)

Instance 1. Let

1 M
U, 2 + e,

22
M

and

tj 1/2 - yM

Clearly, ui E It, vi E T2, and 4, E I.

Now consider the packing produced by algorithm A. By rules R 1 to R 3 imposed on the algorithms

in class C, this packing consists of

n bins, each containing I u, piece,

at least 2- bins containing vi pieces,
2

and

at least r- bins containing tj pieces.



Hence

A(L) > n + M + r> (2- y).
2 M

Since OPT(L) = n. can be arbitrarily large, we have

RA _2-t . (1)

Instance 2. Let

I M
U 2 +2

=j + CM
3 2

and

6M

Clearly, ui E Ii, v, E Iz, and t4 E h.

Now consider the packing produced by algorithm A. This packing consists of

S11 - -L] bins, each containing 2 v( pieces,

n bins, each containing 1 vi piece (and may be I uj piece),m

at least n (I- L bins, each containing I u, piece alone,

and

at least -- bins containing t pieces.

6

Hence

A (L)> I- + "--L-+ n t- + n.

Since OPT(L) = n can be arbitrarily large, we have

(2)

3 2m"

Instance . Let
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M
u 1 -1- + -- ,

2

I M

and

-1/3 C
M

Clearly, u, E TI, v, E 12, and ti E I>.

Now consider the packing produced by algorithm A. This packing consists of

n bins, each containing 1 u, piece,

n [1 _ _i- bins, each containing 2 vi pieces,

-- bins, each containing 1 vi piece,m

and

at least [ nM 1 bins containing t, pieces.

Hence

A(L) n + -1- + _ + + + j1

Since OPT(L) = n can be arbitrarily large, we have

7 1RA > -+ Y + -. (3)6 2m(

Adding (1), (2), and (3), we have

3RA> 2~6'

or

3 1

RA + Q
2 9

If the algorithm A in Theorem 2 uses Next-Fit to pack I,-pieces, then we can get the improved

result RA > 1+ - by modifying the instances 1, 2, and 3 in the proof as follows. In L3 introduce
2 9'
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pieces whose sizes are of the form kc for some appropriate positive integer k, at regular frequency. For

example, in Instance 2, every 6M - 1 t, pieces will be followed by a piece of size (6M + 1)E. Since f can

be taken to be arbitrarily small, we have OPT(L) = n + 1. But A (L) > 1. + 61M- 1)

5. Conclusloris

We have presented a new on-line algorithm, the Modified Harmonic Algorithm, which has a better

asymptotic performance ratio than any previously known on-line algorithm. Moreover, this algorithm is a

linear-time algorithm. It seems likely that a better algorithm could be constructed if the linear time con-

straint were relaxed.

It is argued in ILL831 that any linear-time, constant-space on-line algorithm has a performance ratio

of at least 1.692... We relaxed the constant space constraint and achieved 1.61(561)*. In the previous

section we described a class of linear-time on-line algorithms which have a performance ratio of at least

1.61". It seems quite likely that no linear-time on-line algorithm can do better.

Finally, we observe that our algorithm leads to improved on-line algorithms for packing in two-

dimensions. For packing rectangles in a strip, we can devise a shelf algorithm similar to those in [BS&31.

By choosing appropriate shelf heights, we can obtain a performance ratio arbitrarily close to RAM. We

can also devise an on-line algorithm for the problem of packing rectangles in finite two-dimensional bins

discussed in [CGJ821. We believe that our on-line algorithm for this problem will have a performance

ratio RMN2. These will be discussed in more detail in 1R841.
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